

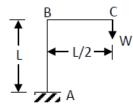
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

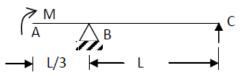
QUESTION BANK (DESCRIPTIVE)

Subject with Code : Structural Analysis-I(16CE117)

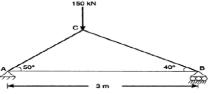
Course & Branch: B.Tech – CE

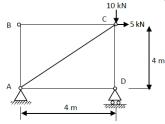

Year & Semester: III-B.Tech & I-Semester

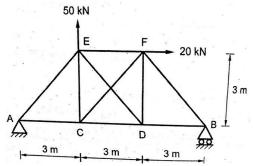
Regulation: R16

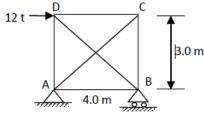

U<u>NIT-I</u>

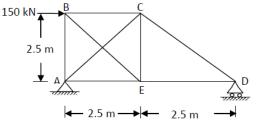
ENERGY METHODS & INDETERMINATE STRUCTURAL ANALYSIS

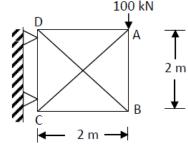

A vertical load W is applied to the rigid cantilever frame shown in figure below. Assuming EI to be constant throughout the frame determine the horizontal and vertical displacements of the point C. Neglect axial deformation.

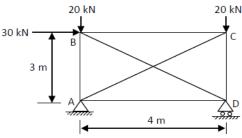

- 2. Calculate the central deflection and slope at ends of a simply supported beam carrying a U.D.L. w per unit length over the whole span.
- 3. Using Castigliano's theorem, determine the deflection and rotation of the overhanging end A of the beam loaded as shown in figure below. 10M


4. Determine the horizontal and vertical deflection components of joint C of the truss shown in figure below by energy method. Take E = 200 GPa and cross sectional area of each member is $1500 \times 10^{-6} \text{ m}^2$. **10M**

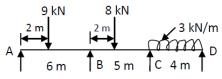

Find horizontal and vertical deflection of joint C of truss ABCD loaded as shown in figure below. Assume that, all members have the same axial rigidity.
 10M

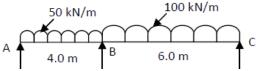

Analyze the truss shown in figure below. Assume that the cross sectional area of all members are same.
 10M


7. A pin jointed framed structure is loaded as shown in figure below. Calculate the forces in all members. Take area for horizontal members as 20 cm2, vertical members as 30 cm2, inclined members as 50 cm2 and E = 2000 t/cm2.
 10M

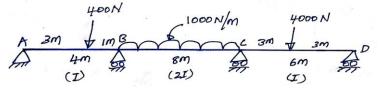

 Determine the forces in the members AC and BE of a pin-jointed truss shown in figure below. Assume cross-sectional area of each member to be 15 x 10-4 m2.
 10M

9. Find the forces in all the members for a statically indeterminate frame shown in figure below. The cross-sectional area and E are the same for all the members. 10M


10. Determine the stresses in all the members of the frame shown in figure below, in which the cross sectional area of vertical members are 30 cm^2 each and those of all other members are 22 cm^2 . Take E = 200 GPa. **10M**

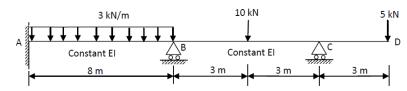

<u>UNIT-II</u>

ANALYSIS OF FIXED BEAMS & CONTINUOUS BEAMS

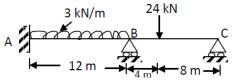

- 1. A fixed beam of length 6 m carries two point loads of 30 kN each at a distance of 2 m from both ends. Determine the fixed end moments and draw BMD. **10M**
- 2. A Fixed beam of span 6 m is subjected a UDL of 5 kN/m on the left half of the span and a point load of 15 kN at the middle of the right half of the span. Draw the SFD and BMD
 10M
- Calculate the fixed end moments and the reactions at the supports for a fixed beam AB of length 6 m. The beam carries point loads of 160 KN and 120 KN at a distance of 2 m and 4 m from the left end A. Draw SFD & BMD.
- 4. (a) Derive an expression to find BM and SF of fixed beam carrying an eccentric load. 6M
 (b) A load of 3 kN is placed at the centre of fixed beam of length 4m. If E = 2 × 106 N/cm2 and I = 20000 cm4, determine the end moments and BM at centre as simply supported beam and deflection under load. 4M
- Determine the fixed end moments for the fixed beam with applied clockwise moment 'M' of distance 'a' from left end. The total length of beam is 'L'. Sketch the bending moment and shear force diagram.
- 6. A continuous beam ABC of constant moment of Inertia carries a load of 10 kN in mid span AB and a central clockwise moment of 30 kN-min span BC. Span AB = 10 m and span BC = 15 m. Find the support moments and plot the shear froce and bending moment diagram.
 10M
- Analyze the continuous beam ABCD shown in the figure below using theorem of three moments. Draw SFD and BMD.
 10M

- A continuous beam ABC of uniform section with span AB and BC as 4 m each, is fixed at A and simply supported at B and C. The beam is carrying a uniformly distributed load of 6 kN/m run throughout its length. Find the support moments and the reactions using theorem of three moments. Also draw SFD and BMD.
- 9. Analyze the beam and draw BMD and SFD

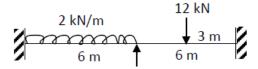
10. A continuous beam ABCD 18 m long is loaded as shown in figure below. During loading support 'B' sinks by 10 mm Find support moments and plot shear force and bending moment diagrams for the beam. Take $E= 20 \text{ kN/mm}^2$, $I = 8 \times 10^6 \text{ mm}^4$ 10M

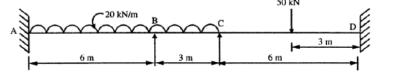


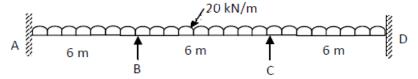
Structural Analysis-I(16CE117)

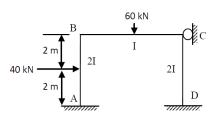

<u>UNIT-III</u>

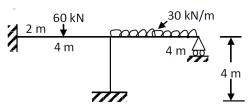
SLOPE DEFLECTION METHOD

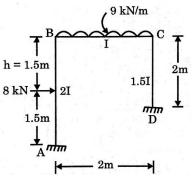

Analyze the continuous beam shown in figure below, using slope deflection method. Draw shear force and bending moment diagram for the continuous beam.
 10M

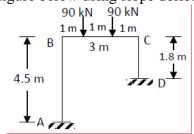

Analyze the continuous beam shown in figure below using slope deflection method. The support B sinks by 0.03 m. Values of E and I are 200 GPa and 0.2 x 10⁻³ m⁴ respectively uniform throughout. Draw SF and BM diagrams.

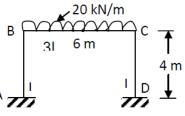

Analyze the continuous beam shown in figure below using slope deflection method. Draw shear force and bending moment diagrams.
 10M


4. Analyze the continuous beam as shown in figure below by slope deflection method. Support B sinks by 10 mm. Take E = 200 GPa and I = 16 x 107 mm4. Draw the bending moment diagram.


 Analyze the continuous beam shown in figure below by slope deflection method and sketch SFD and BMD. EI is constant.
 10M

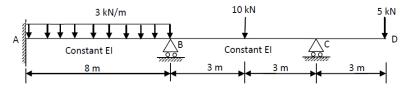

Analyze the portal frame shown in figure below, by slope deflection method. The relative moment of inertia value for each member is indicated in the figure below. Sketch the bending moment diagram
 10M


Analyze the frame shown in figure by slope deflection method. Draw BMD flexural rigidity is same for all members
 10M

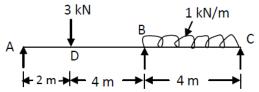

8. Analyze the frame shown in figure using slope deflection method and draw the bending moment diagram.

9. Analyze the portal frame shown in figure below using slope deflection method.

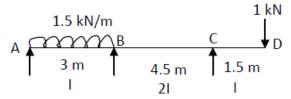
10. Analyze the portal frame shown in the figure below using slope deflection method. Draw also the bending moment diagram. 10M

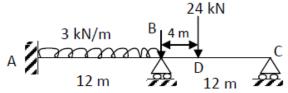


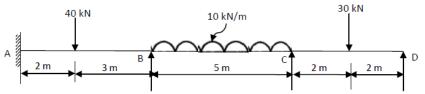
10M

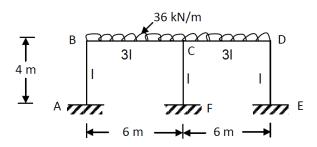

$\underline{UNIT} - IV$

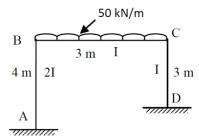
MOMENT DISTRIBUTION METHOD

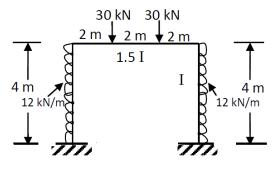

Analyze the continuous beam shown in figure below, using moment distribution method. Draw shear force and bending moment diagram for the continuous beam.
 10M


 Analyze the continuous beam shown in figure below using moment distribution method. Draw the SF and BM diagrams.
 10M

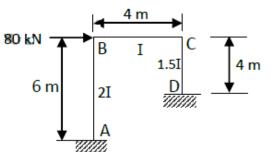

 Analyze the continuous beam shown in figure below using moment distribution method. Draw B.M and S.F diagrams.
 10M


Analyze the continuous beam shown in figure below by using moment distribution method. The support B sinks 30 mm, values of E and I are 200 GPa and 0.2 x 10⁹ m⁴ respectively uniform throughout. Draw S.F and B.M diagrams.

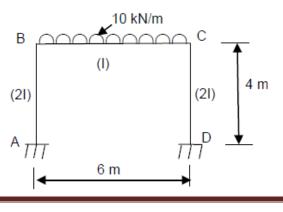

5. Analyze the continuous beam as shown in figure below by moment distribution method. Draw the bending moment diagram 10M


6. Analyze the rigid jointed frame shown in figure by moment distribution method and draw BMD 10M

Analyze the portal frame shown in figure below by moment distribution method. The relative moment of inertia value for each member is indicated in the figure below. Sketch the bending moment diagram.
 10M

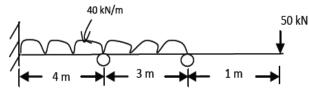

8. Analyze the portal frame shown in figure using moment distribution method

9. Analyze the portal frame shown in figure using moment distribution method

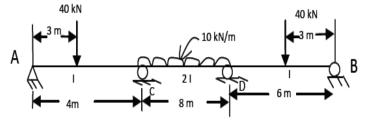

10M

10M

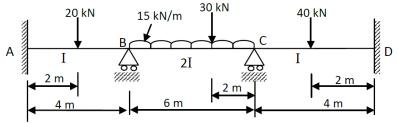
10. Analyze the portal frame shown in figure using moment distribution method


10M

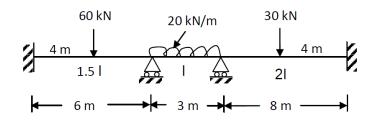
<u>UNIT – V</u>

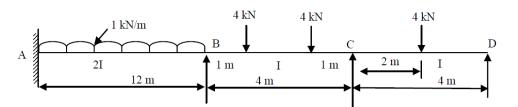

KANI'S METHOD

1. Determine the moments at supports if support B yield by 10 mm under the given loading for the beam as show in figure below by Kani's method, $E=2.05 \times 10^5 \text{ N/mm}^2$, $I=30 \times 10 \text{ mm}^4$. **10M**



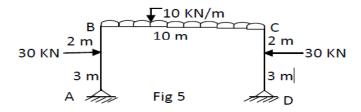
Determine the end moments of the continuous beam as shown in figure below by Kani's method. E is constant.


10M

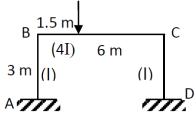

3. Analyze the continuous beam shown in the figure by Kani's method

4. Analyze the continuous beam shown in the figure by Kani's method

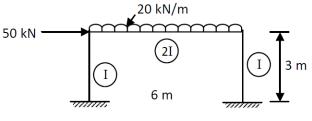
5. Analyze the continuous beam shown in the figure by Kani's method

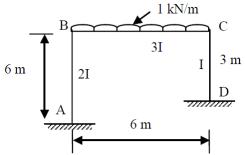


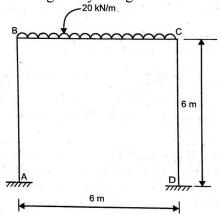
Structural Analysis-I(16CE117)

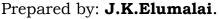

10M

10M


6. Analyze the structure shown in figure using Kani's method and draw BMD.


7. Analyze the frame shown in figure using Kani's method 80 kN


8. Analyze the portal frames shown in figure by Kani's method _20 kN/m



9. Analyze the portal frames shown in figure by Kani's method

10. Analyze the portal frame shown in figure by using Kani's method

Structural Analysis-I(16CE117)

10M

10M

10M

10M

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (OBJECTIVE)

Subject with Code : Structural Analysis-I(16CE117)

Course & Branch: B.Tech – CE

Year & Semester: III-B.Tech & I-Semester

Regulation: R16

U<u>NIT-I</u>

ENERGY METHODS & INDETERMINATE STRUCTURAL ANALYSIS

1.	Compatibility conditions are primarily gover	rned by		[]
	A) Strain B) stress C) temperature D) force				
2.	Number of compatibility condition needed a	nalysis of statically de	terminate struc	ture are	
	A) 0 B) 2 C) 3 D) 6			[]
3.	Minimum number of equilibrium equations i	required for a plane fra	ames analysis o	f structi	are is
	A) 2 B) 3 C) 5 D)6		-	[]
4.	Minimum number of equilibrium equations i	required for a space fra	ames analysis o	f struct	ure is
	A) 3 B) 6 C)8 D)9		-	[]
5.	The number of independent equations to be s	satisfied for static equi	ilibrium of a pla	ane stru	cture
	is	_	-	[]
	A) 3 B) 9 C) 1	D) 6			
6.	If there are m unknown member forces, r unk	known reaction compo	nents and j nun	ber of	joints,
1	hen the degree of static indeterminacy of a pi	n-jointed plane frame	is given by	[]
	A) $m + r + 2j$ B) $m - r + 2j$	C) $m + r - 2j$	D) m + r - 3j		
7.	Number of unknown internal forces in each m	nember of a rigid joint	ed plane frame	is []
	A) 3 B) 2	C) 3	D) 6		
8. 2	Degree of static indeterminacy of a rigid-joint	ted plane frame having	g 15 members, 3	8 reactio	on
	nponents and 14 joints is			[]
	A) 2 B) 3	C) 6	D) 10		
9.	Degree of kinematic indeterminacy of a pin-	jointed plane frame is	given by	[]
	A) 2j + r B) j - 2r	C) 3j – r	D) 2j - r		
10	Independent displacement components at each	ch joint of a rigid-join	ted plane frame	are	
			-	[]
	A) Three linear movements	B) Two linear movem	nents and one ro	otation	
	C) One linear movement and two rotations	D) Three rotations			
11	If in a pin-jointed plane frame $(m + r) > 2j$, t	hen the frame is		[]
	A) Stable and statically determinate	B) stable and staticall	y indeterminate	•	
	C) Unstable	D) none of the above			
12	where m is number of members, r is reaction	components and j is i	number of joint	8	
	A pin-jointed plane frame is unstable if			[]
	A) $(m + r) > 2j$ B) $m + r = 2j$	C) (m + r)<2j	D) none of the	above	
13	13. where m is number of members, r is reaction components and j is number of joints				
	A rigid-jointed plane frame is stable and stat	ically determinate if		[]
	A) $(m + r) = 2j$ B) $(m + r) = 3j$	C) $(3m + r) = 3j$	D) (m + 3r) =	3ј	

14. where m is number of members, r is reaction components and j is number of joints The number of independent equations to be satisfied for static equilibrium in a space structure is 1 A) 6 **B**) 4 C) 3 D) 2 15. For a fixed support, the numbers of reactions are 1 **B**) 2 A) 1 C) 3 D) 4 16. For a roller support, the numbers of reactions are ſ 1 A) 1 B) 2 C) 3 D) 4 17. For a pinned support, the numbers of reactions are ſ 1 B) 2 A) 1 C) 3 D) 4 18. External redundancy can be calculated by Γ 1 A) E=R-r B) E=R+rC) E=r-R D) E = r + R19. For a beam, if fundamental equations of statics are not sufficient to determine all the reactive forces at the supports, the structure is said to be A) Determinate B) Statically determinate C) Statically indeterminate D) none 20. For a beam, if fundamental equations of statics are sufficient to determine all the reactive forces at the supports, the structure is said to be 1 B) Statically determinate A) Determinate C) Statically indeterminate D) none 21. If the beam is supported so that there are only three unknown reactive elements at the supports. These can be determined by using A) $\Sigma H = 0$ B) $\Sigma V = 0 \Sigma H = 0$ C) $\Sigma H = 0 \Sigma V = 0 \Sigma M = 0$ D) none 22. For a beam having fixed ends, the unknown element of the reactions is Γ 1 A) Horizontal components at either end B) vertical components at either end C) Horizontal component at one end and vertical component at other end D) Horizontal component and vertical component at both ends. 23. The deformation of a spring produced by a unit load is called ſ 1 A) Stiffness B) flexibility C) Influence coefficient D) unit strain 24. End A of beam AB is hinged and end B is on roller. The degree of kinematic indeterminacy is D) zero A) 3 **B**)2 **C**)1 25. The number of equilibrium conditions required to find the displacement components of at joints of the structure are known as ſ 1 A) The degree of kinematic indeterminacy or degree of freedom B) The degree of static indeterminacy or degree of redundancy C) Both A and B D)None of the above 26. The number of equilibrium conditions required to find the displacement components of at joints of the structure are known as ſ 1 A) The degree of kinematic indeterminacy or degree of freedom B) The degree of static indeterminacy or degree of redundancy C) Both A and B D) None of the above 27. A beam having fixed and free ends then it is called [1 B) Continuous C) Cantilever D) Simply Supported A) Fixed 28. A beam having pinned and roller ends then it is called 1 ſ A) Fixed B) Continuous C) Cantilever D) Simply Supported

QUESTION BANK 2018	}
29. The maximum strain energy stored in a material at elastic limit per unit volume is [A) Resilience B) Proof resilience C) Modules of resilienceD) Modulus of rigidity	
30. The maximum strain energy stored in a material is []	
A) Resilience B) Proof resilience C) Modules of resilience D) Modulus of rigidity	
31. External indeterminacy of the beam can be calculated by []	
A)R-r B)R+r C)m-(2j-r) D)m-(3j-r)	
32. External indeterminacy of the frame can be calculated by []	
A)R-r B)R+r C)m-(2j-r) D)m-(3j-r)	
33. The member is subjected to axial force then that structure is []	
A) Pin jointed structure B)Rigid structure C)Surface structure D)None	
34. The member is subjected to axial, shear forces and bending moment then that structure is	
A) Pin jointed structure B)Rigid structure C)Surface structure D)None[]	
35. Internal indeterminacy of the frame can be calculated by []	
A)R-r B)Zero C)m-(2j-r) D)3C	
36. Internal indeterminacy of the truss can be calculated by []	
A)R-r B)Zero C)m-(2j-r) D)3C	
37. Pin joint	
A) Axil force B) Shear force C) Bending moment D) None	
38. Rigid joint	
A) Axil force B) Shear force C) Bending moment D) All the above	
20 Share equation	
A) EI $\frac{d^2 y}{dx^2}$ B) I $\frac{d^2 y}{dx^2}$ C) EI $\frac{dy}{dx}$ D) EIY	
40. Deflection equation []	
A) EI $\frac{d^2 y}{dx^2}$ B) I $\frac{d^2 y}{dx^2}$ C) EI $\frac{dy}{dx}$ D) EIY	

		QU	UESTION BANK	2018		
		UNIT-II				
	<u>ANALYSIS OF FIXED BEAMS & CONTINUOUS BEAMS</u>					
	ANAL 1515 OF FIAED		OS DEANIS			
1.	Rotation at the fixed end		[]			
	A) L/2 B) L/4 C) Zet	to D) none				
2.	Net moment at the support		[]			
0	A) Zero B) double C) hal	·	r 1			
3.	Bending Moment is to she					
	A) Directly proportionalB) IndC) EqualD) all	the above				
4.	Degree of freedom for fixed end cor		[]			
	A) Zero B) 1	C) 2 D) 3				
5.	A fixed beam is subjected to UDL	over its entire span. The joints	s of contra-flexur	e will occur		
	on either side of the center at a dista		nter. []			
	A) $1/\sqrt{3}$ B) $1/3$ C) $1/2$	/	r 1			
6.	A beam is a structural member pred	• •	D) none of the of			
7.	A) Transverse loads B) axial force The moment distribution method is	_	D) none of the at	Jove		
7.			L J			
		B) Rigid frames				
	C) Space frames	D) Trussed beam				
8.	In slope deflection method, the unkr	nown rotations at various joints	are determined b	У		
	considering A) The equilibrium of the joint	B) The rigidity of the joint	L J			
	C) The equilibrium of the structure	D) None				
9.	9. While using three moments equation, a fixed end of a continuous beam is replaced by an					
	Additional span of A) Zero length B) Infinite length	C) Zero moment of inertia	D) None of the a	bove		
10.	Maximum deflection of a		[]			
	A) Cantilever beam carrying a conc			T		
	B) Simply supported beam carryingC) Cantilever beam, carrying a unif		1	1		
	D) All the above	oning distributed foud over spe				
11.	The shear force on a simply support	1 1	[`]			
	A) Displacement of the neutral axisC) Sum of the transverse forces	B) Sum of the forcesD) Algebraic sum of the trans	sverse forces of th	e section		
12.	In a loaded beam, the point of contra					
	A) Bending moment is minimum	B) Bending moment is zero o				
13	C) Bending moment is maximum The shape of the bending moment d	D) Shearing force is maximum in agram over the length of a bea		formly		
19.	increasing load, is always	agram over the length of a bea	[]	i offining		
<u>.</u>	A) Linear B) Parabolic C) Cu			0 1		
14.	The shape of the bending moment d distributed load is always	agram over the length of a bea		tormly		
	A) Linear B)Parabolic C) Cu	bical D) Circular				
	. , ,					

	Q	UESTION BANK 2018
	rrying a uniformly distributed load of	over its length, is
	C)Parabola D) Cubic parabola	[]
	the unknown element of the reaction	
A) Horizontal components at e		
	ne end and vertical component at the	e other
D) Horizontal and vertical con	on of a beam is zero, the bending m	oment at the section is
	inimum D) Average of maximum-	
	tilever carrying a concentrated load	
	C)Parabola D) Cubic parabola	[]
19. The bending moment is maxin	num on a section where shearing for	rce []
A) Is maximum B) Is mi	· 1	D) Changes sign
	with a central load, the bending mor	nent is []
A) Least at the centre B) Le	11	
C) Maximum at the supports 1	ent curve the point where it changes	sign is called
	B) Point of contra flexure	[]
,	D) All the above	LJ
22. The max deflection of a simply	y supported beam of length L with a	a central load W, is
A)WL ² /48EI B)W ² L/24EI		[]
	ies two equal concentrated loads W	
support. The maximum bendir	-	[]
· · · · · ·	C)5WL/4 D)3WL/12 cted to a bending moment at its free	and If FL is the flavural
rigidity of the section, the defle	-	
	$C)ML^2/2EI$ D)ML ² /3EI	L J
25. In a fixed beam, at the fixed end		[]
A) Slope is zero and deflection	n is maximum	
B) Slope is maximum and defl	ection is zero	
C)Both Slope and deflection a	re maximum	
D) Slope and deflection are ze	ero	
26. A beam fixed at both ends car	ties a UDL of 20KN/m over the entit	ire span of 6 m. The bending
moment at the centre of the be	am is	[]
A) 10KN-m B) 30KN-m	C) 60KN-m D) 90KN-m	
27. A beam ABC is simply support	ted at B and C and AB being the ov	verhanging portion with UDL
the maximum number of contr	a-flexure points in the beam will be	equal to
A) 0 B)1 C) 2 D)3		[]
28. The rate of change of bending	moment represents	[]
A) Shear force B) Horizontal F	Force C) Bending moment D) not	ne
29. The units of bending moment	are	[]
A) KN-m B) $KN-m^2$	C) KN/m D) KN/m ²	
30. A fixed beam AB 6 m long can	rries a vertical load 90 KN at 2m fro	om A. The fixed end moments
at A and B are		[]
A) 40 KN-m, 80 KN-m	B) 40 KN-m,120 KN-m	
C) 80 KN-m,40 KN-m	D) 120 KN-m,80 KN-m	

QUESTION BANK 2018
31. In a fixed beam is subjected to UDL throughout the span, the point of contra flexure will occur at
A) L/2 B) At two fixed supports C) 0.21 L from each of the supports
D) 0.667 L from each of the supports
32. The point of contra flexure in a fixed beam carrying UDL will occur at a distance from
the ends []
A) $L/\sqrt{3}$ B) $L/\sqrt{2}$ C) $L/3\sqrt{2}$ D) $L/2\sqrt{3}$
33. A beam having more than two supports then it is called []
A) Fixed B) Continuous C) Cantilever D) Simply Supported
34. Fixed beam is more []
A) Stable B) Stronger C) Stiffer D) All
35. At the point of contra flexure the moment is []
A) Maximum B) Minimum C) Zero D) Negative
36. At the maximum deflection the slope is []
A) Maximum B) Minimum C) Zero D) Negative
37. A simply supported beam of span L carries a uniformly distributed load W. The maximum
bending moment M is $\begin{bmatrix} \\ \end{bmatrix}$
$A)\frac{WL}{2} B)\frac{WL}{4} C)\frac{WL}{8}D)\frac{WL}{12}$
38. A simply supported beam of span L carries a concentrated load W at its mid span. The maximum bending moment M is $[A] \frac{WL}{2} B \frac{WL}{4} C \frac{WL}{8} D \frac{WL}{12}$
39. For a simply supported beam with a central load, the bending moment is []A) Least at the center. B) Least at the supports. C) Maximum at the supports. D) Maximum at the center
40. The deflection of any rectangular beam simply supported is []
A)Directly proportional to its weight B)Inversely proportional to its width

C) Inversely proportional to the cube of its depth D)All the above

<u>UNIT-III</u>

SLOPE DEFLECTION METHOD

1. The number of independent	equations to be satisfied	for static equilibrium of a	plane st	ructure
is	equations to be subfied	for suite equilibrium of a	[]
A) 1 B) 2 C) 3 D) 6			L	-
2. In the slope deflection equat	ions, the deformations an	re considered to be caused	by	
			[]
i. Bending mor	nent			
ii. Shear force				
iii. Axial force				
The correct answer is				
A) Only (i) B) (i) and (ii)	C) (ii) and (iii)	D) (i), (ii) and (iii)		
3. The fixed end moment for c	ontinuous beam subjecte	d to UDL	[]
A) $\frac{wl^2}{12}$ B) $\frac{wl^3}{12}$ C			-	-
$A)\frac{12}{12}$ $B)\frac{12}{12}$ C	$\frac{1}{8}$ D) $\frac{1}{l^2}$			
4. The fixed end moment for c	•	d to central point load	[]
A) $\frac{wl^2}{12}$ B) $\frac{wl^3}{12}$ C	$\frac{Wl}{D}$ D) $\frac{Wab^2}{D}$			
12 12		1, , 11 , 1	1	
5. The fixed end moment for c		d to eccentrically point loa	d	
A) $\frac{wl^2}{12}$ B) $\frac{wl^3}{12}$ C	$\frac{W_{l}}{8}$ D) $\frac{W_{ab}}{l^{2}}$		[]
6. Slope deflection equation M			ſ]
A) $F_{AB} + \frac{2EI}{l} (2\theta_A + \theta_B)$)	L	1
•	· · · · · · · · · · · · · · · · · · ·			
C) $F_{BA} + \frac{2EI}{l} (2\theta_B + \theta_A)$	D) $F_{BA} + \frac{2EI}{l} (2\theta_A + \theta_B)$)		
7. A continuous beam AB subj	ected to UDL of 20 kN/n	n then fixed end moment F	FAB is	
A) 40 kN-m B) 120 kN-m		D) 180 kN-m	[]
8. A continuous beam AB subj			momen	-
	Ĩ		ſ]
A) 40 kN-m B) 45 kN-m	C) 60 kN-m	D) 80 kN-m	L	-
9. Frames may sway due to	-,	,	ſ	1
A) Horizontal force & unsy	nmetrv	B) horizontal force only	L	1
C) unsymmetry of columns	2	D) all the above		
10. A beam subjected to UDL th	nen bending moment dia			
A) Triangle B) rectangle		D) cubic	ſ]
11. A beam subjected to point the	/ 1		L	1
A) Triangle B) rectangle		D) cubic	ſ]
12. A beam subjected to UVL th	· •		L	L
A) Triangle B) rectangle	•	D) cubic	ſ	1
13. The develop method for slop	· 1	_,	ſ]
A) Flexibility method			L	L
C) Stiffness matrix method		1 method		
c) sumes mum method		. moniou		

QUESTION BAN	К	2018
14. In the displacement method of structural analysis, the basic unknowns areA) DisplacementsB) force	[]
C) Displacements and forces D) none of the above		
15. In the slope deflection equations, the deformations are considered to be caused by	,	
i) B.M. ii) S.F.iii) axial force		
The correct answer is:	[]
A) Only I B)i and ii C) ii and iii D)all three		
16. Bending moment at any section in a conjugate beam gives in the actual beam		
A)Slope B) curvature C) deflection D) B.M.	[]
17. The statically indeterminate structures can be solved by	[]
A) Using equations of statics alone B) Equations of compatibility alone		
C) Ignoring all deformations and assuming the structure is rigid		
	ity,	
D)Using the equations of statics and necessary number of equations of compatibil	•	
18. A beam is completely analysed,	[J
A) Support reactions are determined B)Shear and moment diagrams are for	ound	l
C) The moment of inertia is uniform throughout the length		
D) All of the above		
19. A bending moment may be defined asA) Arithmetic sum of the moments of all the forces on either side of sectionB) Arithmetic sum of the forces on either side of sectionC) Algebraic sum of the moments of all the forces on either side of sectionD) None of these	[]
20. At either end of a plane frame, maximum number of possible transverse shear for	ces	are
A) One B) two C) three D) four	[]
21. At either end of a plane frame, maximum numbers of possible bending moments a	are	
A) One B) two C) three D) zero	[]
 22. If one end of a prismatic beam AB with fixed ends is given a transverse displacem any rotation, then the transverse reactions at A or B due to displacement is A) 6ΕΙΔ/l² B) 6ΕΙΔ/l³ C) 12ΕΙΔ/l² D) 12ΕΙΔ/l³ 	ient [Δ without]
23. In slope deflection method, the unknown rotations at various joints are determined considering	l by []
A) The equilibrium of the jointB) The rigidity of the joint		
C) The equilibrium of the structureD) None		
24. A Continuous beam ABC, supports A and C are fixed and support B simply support	ortec	l carries
an udl of 3KN/m over AB span. Span AB=6m, BC=4m.Fixed end moment at A		
A) -9kNm B) 9.5kNm C) -8.5 kNm D) 8kNm	[]
25. A Continuous beam ABC, supports A and C are fixed and support B hinged carrie	es an	udl of 3
KN/m over BC span. Span AB=6m, BC=4m Fixed end moment at B]]
Structural Analysis-I(16CE117)		Page 17

			QUESTION BANK 2	018
A) -9kNm	B) 9kNm	C) -4 kNm	D) 4 kNm	1
A) Rigid joints	a structure composed of B) simple bearing	g C) a single rivet D) r	•]
27. Consider the fol	e e		[]
-	termediate support of a negative moment at a su			
	negative moment at a se			
3) Reduces the p	positive moment at a su	pport		
	e positive moment at the	-		
	statements, which are o		$\mathbf{D} = 1 4$	
A) 1 and 4 28 For the applicati	B) 1 and 3	C) 2 and 3	D) 2 and 4 tion at a section in a bear	n
11	of at least one tangent	e e]
-	agram must be a triangle			1
C) The beam mu	ust be of uniform mome	ent of inertia		
	agram if known is suffic			
	ent from A to B for beau 1/2 D W $1/2/12$ G		load is []
	b/l^2 B) W a b^2/l^2 C		le with maximum ordina	te as
50. In portion AD, t	ne nee moment diagram	ii is a symmetric triang		le as
A) WL ² /	12 B)WL/8	C) WL/4	D)WL/3	L
31. In portion BC, the	he free moment diagram	n is a symmetric parab	ola with maximum ordin	nate as
			[]
A) WL ² /	78 B)WL/8	C) WL/4	$1 \times 1 \times$	
22 Due to lateral an	way aguaga additional m	,	D)WL/3	
	vay causes additional n tribution B) Displa	noments in the column,	,	1
A) Rotation con	tribution B) Displa	,	,]
A) Rotation con C) Torsional Co	tribution B) Displa ntribution D) None	noments in the column, acement contribution	,	
A) Rotation conC) Torsional Co33. While using slopA) Clockwise B	tribution B) Displa intribution D) None pe deflection method, in) Anti-clockwise C) De	noments in the column acement contribution in which direction is mo opends upon case D	, which may be called [ment taken as positive?[Depends upon loading	
 A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett 	tribution B) Displa ontribution D) None pe deflection method, in) Anti-clockwise C) De les by 1mm downward,	noments in the column, acement contribution in which direction is mo opends upon case D , what is direction of ro	, which may be called [ment taken as positive?[) Depends upon loading tation at point A? [
 A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett A) +ve E 	tribution B) Displa intribution D) None pe deflection method, in) Anti-clockwise C) De les by 1mm downward B) –ve C) Can't say D	noments in the column acement contribution in which direction is mo spends upon case D , what is direction of ro) Depends upon loadin	which may be called [ment taken as positive?[Depends upon loading tation at point A? [g at point A]]
 A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett A) +ve E 35. If support B sett 	tribution B) Displa ontribution D) None pe deflection method, in) Anti-clockwise C) De les by 1mm downward, B) –ve C) Can't say D les by 1mm downward,	noments in the column, acement contribution in which direction is mo pends upon case D , what is direction of ro) Depends upon loadin , what is direction of ro	which may be called [ment taken as positive?[Depends upon loading tation at point A? [g at point A tation at point B? []
 A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett A) +ve E 35. If support B sett A) +ve E 	tribution B) Displa ontribution D) None pe deflection method, in) Anti-clockwise C) De les by 1mm downward B) –ve C) Can't say D les by 1mm downward B) –ve C) Can't say D	noments in the column, acement contribution in which direction is more pends upon case D) what is direction of ro Depends upon loadin, what is direction of ro Depends upon loadin	which may be called [ment taken as positive?[) Depends upon loading tation at point A? [g at point A tation at point B? [g at point A]]]
 A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett A) +ve E 35. If support B sett A) +ve E 36. How many sde (tribution B) Displa ontribution D) None pe deflection method, in) Anti-clockwise C) De les by 1mm downward, B) –ve C) Can't say D les by 1mm downward,	noments in the column, acement contribution in which direction is more pends upon case D) what is direction of ro Depends upon loadin, what is direction of ro Depends upon loadin	which may be called [ment taken as positive?[) Depends upon loading tation at point A? [g at point A tation at point B? [g at point A]]
 A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett A) +ve B 35. If support B sett A) +ve B 36. How many sde (A) 0 B) 3 C 37. What will be on 	tribution B) Displated by Displated B) Displated by Displated B) None by the deflection method, in the deflection method, in the deflection method, in the deflection method, in the deflection by 1 mm downward, b) $-\text{ve } C$) Can't say D des by 1 mm downward, b) $-\text{ve } C$) Can't say D des by 1 mm downward, b) $-\text{ve } C$) Can't say D deflection equation C and the extra condition by the deflection de	noments in the column, acement contribution in which direction is mo pends upon case D) , what is direction of ro) Depends upon loadin, , what is direction of ro) Depends upon loadin, ons) are possible if 4 su	which may be called [ment taken as positive?[) Depends upon loading tation at point A? [g at point A tation at point B? [g at point A upports are there? []]] r joint I
A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett A) +ve E 35. If support B sett A) +ve E 36. How many sde (A) 0 B) 3 C 37. What will be on A) $M_{BA} + M_{CA} =$	tribution B) Displated by Displayed by Disp	noments in the column, acement contribution in which direction is more pends upon case D, what is direction of ro) Depends upon loadin, what is direction of ro) Depends upon loadin, ons) are possible if 4 su , which we will get if w 0 C) $M_{BA} + M_{BC} = 0$	which may be called [ment taken as positive?[) Depends upon loading tation at point A? [g at point A tation at point B? [g at point A upports are there? [we conserve moment near D) $M_{AB} + M_{BC} = 0$]]] r joint I
A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett A) +ve E 35. If support B sett A) +ve E 36. How many sde (A) 0 B) 3 C 37. What will be on A) $M_{BA} + M_{CA} =$ 38. What is the Deg	tribution B) Displated by Displated B) Displated by Displated B) None (1) None (2)	noments in the column, acement contribution in which direction is more pends upon case D, what is direction of ro) Depends upon loadin, what is direction of ro) Depends upon loadin, ons) are possible if 4 su , which we will get if w 0 C) $M_{BA} + M_{BC} = 0$	which may be called [ment taken as positive?[) Depends upon loading tation at point A? [g at point A tation at point B? [g at point A upports are there? []]] r joint I
A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett A) +ve E 35. If support B sett A) +ve E 36. How many sde (A) 0 B) 3 C 37. What will be on A) $M_{BA} + M_{CA} =$ 38. What is the Deg A) 1 B) 2 C	tribution B) Displated by Displayed by Disp	noments in the column, acement contribution in which direction is more pends upon case D, what is direction of ro) Depends upon loadin, what is direction of ro) Depends upon loadin, ons) are possible if 4 su , which we will get if w 0 C) $M_{BA} + M_{BC} = 0$	which may be called [ment taken as positive?[Depends upon loading tation at point A? [g at point A tation at point B? [g at point A upports are there? [we conserve moment near D) $M_{AB} + M_{BC} = 0$ []]] r joint I []]
A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett A) +ve E 35. If support B sett A) +ve E 36. How many sde (A) 0 B) 3 C 37. What will be on A) $M_{BA} + M_{CA} =$ 38. What is the Deg A) 1 B) 2 C 39. What will be Mi	tribution B) Displated by Displayed by Disp	noments in the column, acement contribution in which direction is more pends upon case D), what is direction of ro) Depends upon loadin, what is direction of ro) Depends upon loadin, ons) are possible if 4 su , which we will get if w 0 C) $M_{BA} + M_{BC} = 0$ peam?	which may be called [ment taken as positive?[) Depends upon loading tation at point A? [g at point A tation at point B? [g at point A upports are there? [we conserve moment near D) $M_{AB} + M_{BC} = 0$]]] r joint I
A) Rotation con C) Torsional Co 33. While using slop A) Clockwise B 34. If support B sett A) +ve E 35. If support B sett A) +ve E 36. How many sde (A) 0 B) 3 C 37. What will be on A) $M_{BA} + M_{CA} =$ 38. What is the Deg A) 1 B) 2 C 39. What will be Mi	tribution B) Displated by Displated by Displated by Displated by Downward (Displated by Displated by Displayed by Display	noments in the column, acement contribution in which direction is more pends upon case D), what is direction of ro) Depends upon loadin, what is direction of ro) Depends upon loadin, ons) are possible if 4 su , which we will get if w 0 C) $M_{BA} + M_{BC} = 0$ peam?	which may be called [ment taken as positive?[Depends upon loading tation at point A? [g at point A tation at point B? [g at point A upports are there? [we conserve moment near D) $M_{AB} + M_{BC} = 0$ []]] r joint I []]

<u>UNIT – IV</u>

MOMENT DISTRIBUTION METHOD

1.	In moment distribution method, the sum of distribution factors of all the member	rs meeti	ng at
	any joint is always	[]
	A) Zero B) less than 1 C) 1 D) greater than 1	r	-
2.	The carryover factor in a prismatic member whose far end is fixed is	[]
2	A) 0 B) ¹ / ₂ C) ³ / ₄ D) 1	г	1
з.	Carry over factor = $M' = M'$	l]
	A) $\frac{M}{\theta_A}$ B) $\frac{\theta_A}{M}$ C) $\frac{M'}{M}$ D) $\frac{M}{M^l}$		
4.	Stiffness K=	[]
	A) $\frac{M}{\theta_A}$ B) $\frac{\theta_A}{M}$ C) $\frac{M'}{M}$ D) $\frac{M}{M^I}$		
_		r	1
5.	Distribution factor = $\sum_{K} \sum_{K} \sum_{m} \sum_{K} \sum_{K} \sum_{m} \sum_{K} \sum_{K} \sum_{m} \sum_{K} $	[]
	A) $\frac{\Sigma \kappa}{M}$ B) $\frac{\Sigma \kappa}{\kappa}$ C) $\frac{M}{\Sigma \kappa}$ D) $\frac{\kappa}{\Sigma \kappa}$		
6.	If the far end is fixed then stiffness K=	[]
	$A)\frac{4EI}{L}$ $B)\frac{3EI}{L}$ $C)\frac{2EI}{L}$ $D)\frac{EI}{L}$		
7.	Which of the following methods of structural analysis is a displacement method	[]
	A) Moment distribution method B) column analogy method		
	C) Three moment equation D) none of the above		
8	In the displacement method of structural analysis, the basic unknowns are	[]
	A) Displacements B) force		
	C) Displacements and forces D) none of the above		
9.	The moment distribution method is best suited for (Observers-2013)	[]
	A) Indeterminate pin jointed truss B) Rigid frames		
	C) Space frames D) Trussed beam		
10.	Bending moment at any section in a conjugate beam gives in the actual beam:	[]
11	A)SlopeB) curvatureC) deflectionD) B.M.The statically indeterminate structures can be solved by:	г	1
11.	A) Using equations of statics alone B) Equations of compatibility alone	L]
	C) Ignoring all deformations and assuming the structure is rigid		
	D) Using the equations of statics and necessary number of equations of compatibility		
12.	The simultaneous equations of slope deflection method can be solved by iteration in:	[]
	A) Moment distribution methodB) Consistent deformation methodC) Conjugate beam methodD)Williot mohr method		
13.	The carryover factor in a prismatic member whose far end is hinged is (AEE-2008)	[]
	A) 0 B) 1/2 C) 3/4 D) 1		
14.	The moment required to rotate the near end of a prismatic beam through a unit angle wi		nslation,
	the far end being simply supported, is given by(AEE-1996, 2004,2006,TSPSC-GENC) A)3EI/L B) 4EI/L C)2EI/L D)EI/L	U-15	1
	A = D + E = C = C = D = E = C = C = C = C = C = C = C = C = C	L	1

QUESTION BA	NK	2018
Where EI is flexural rigidity and L is the span of the beam.15. The moment required to rotate the near end of a prismatic beam through a unit angle w the far end being fixed, is given byA)EI/LB) 2EI/LB) 2EI/LC) 3EI/LD)4EI/L	'ithou [t translation,]
 Where EI is flexural rigidity and L is the span of the beam. 16. If M is the external moment which rotates the near end of a prismatic beam without tra end being fixed), then the moment induced at the far end is (AEE-2006) 	nslati [on (the far]
A) M/2 in the same direction as MB) M/2 in the opposite direction as MC) M in opposite directionD) 0		
 17. If one end of a prismatic beam AB with fixed ends is given a transverse displacement A rotation, then the transverse reactions at A or B due to displacement is: (AEE-2012) B) 6ΕΙΔ/l² B) 6ΕΙΔ/l³ C) 12ΕΙΔ/l² D) 12ΕΙΔ/l³ 	Δ with [out any]
18. Moment-distribution method was suggested by A) Hardy CrossB) G.A. ManeyC) Gasper KaniD) None of t19. A simply supported beam of span L carries a uniformly distributed load W. The] imum
bending moment M is A) $\frac{WL}{2}$ B) $\frac{WL}{4}$ C) $\frac{WL}{8}$ D) $\frac{WL}{12}$	[]
20. A simply supported beam of span L carries a concentrated load W at its mid sp maximum bending moment M is $A)\frac{WL}{2} B)\frac{WL}{4} C)\frac{WL}{8} D)\frac{WL}{12}$	an. T ['he]
21. A simply supported beam carries two equal concentrated loads W at distances I support. The maximum bending moment M is $A)\frac{WL}{3} \qquad B)\frac{WL}{4} \qquad C)\frac{5WL}{8} \qquad D)\frac{3WL}{12}$	_/3 fr [om either]
22. For a simply supported beam with a central load, the bending moment isA) Least at the centre B) Least at the supportsC) maximum at the support	[ts]
D) Maximum at the centre 23. Rotation at the fixed end A) L/2 B) L/4 C) Zero D) none	[]
 24. A portal frame having single bay, single storey configuration can be analysed by B) Kani's method C) Moment distribution method D) All of the above 	oy usi [ng]
25. The ratio of stiffness of a member when far end is hinged to that of the member fixed isA) 1 B) 2 C) 3/4 D) 4/3	r whe [en far end is]
 A) 1 B) 2 C) 5/4 D) 4/5 26. For a simply supported beam with a central load, the bending moment is A) Least at the centre B) Least at the supports C) maximum at the support D) Maximum at the centre 	[ts]
27. The simultaneous equations of slope deflection method can be solved by iterationA) Moment distribution methodB) Consistent deformation method	[]
D) Conjugate beam method D)Williot mohr method 28. A beam is a structural member predominantly subjected to	[]
A) Transverse loadsB) axial forcesC) twisting momentD) none of t29. The moment distribution method is best suited for	he ab]
Structural Analysis-I(16CE117)		Page 20

	QUESTION BANK 2018
A) Indeterminate pin jointed truss B) Rigid frames	
C) Space frames D) Trussed beam	
30. A two span continuous beam ABC, fixed at 'A' and 'C' l	have equal span of 0.5 each EI is same
for both spans. The distribution factors for member BA is	
A) ¹ / ₂ B) ¹ / ₄ C) 1/3 D) 2/3	
31. If K_i is the stiffness of i^{th} member at a joint the distribution	on factor for the member is[]
A) $K_i / \sum K_i B \sum K_i C K_i D$ ($\sum K_i - K_i$))
32. A fixed beam is subjected to a moment M at the mid spar	n sections; the fixed end moments are
A) M B)M/2 C) M/4 D) M/3	[]
33. If one end of a fixed beam of span 'l' and flexural rigidity	y EI sinks by δ , the beam is subjected
to	[]
A) Sagging moment(6EI δ/l^2) B) hogging momen	t(6EI δ/l ²)
C) Sagging moment at the lower support and hogging m	oment at the other support of
magnitude (6EI δ/l^2)	
D) Hogging moment at the lower support and sagging mo	oment at the other support of
magnitude (6EI δ/l^2)	
34. Hardy cross method of analysis is based on	[]
A) Slope displacement method B) Moment area me	ethod
C) Conjugate beam method D) Virtual work method	
35. For prismatic members, the stiffness factor is computed a	as []
A) EI B) EI/L C)1/EI D) L/EI	
36. The moment distribution method in structural analysis ca	in be treated as []
A) Force method B) Displacement method C) Flexibilit	ty method D) Numerical method
37. When a moment is applied at one end of a member allow	ing rotation of that end and fixing the
far end and if same moment develops at far end also, this	is called as []
A) Balancing moment B) carryover moment C) Distribution	ution moment D) Rotation Factor
38. Relative stiffness when far end is fixed	[]
A) I/L B)2I/L C) 3I/L 3I/4L	
39. Relative stiffness when far end is hinged	[]
A) I/L B)2I/L C) 3I/L D)3I/4L	
40. The deformation of a spring produced by a unit load is ca	
A) Stiffness B) Flexibility C) Influence Coefficient	D) Unit strain

<u>UNIT – V</u>

KANI'S METHOD

1.	 The following methods are used for structural analysis: i) Macaulay method ii) Column analogy method iii) Kani's method iv) Method of sections 	[]
	Those used for indeterminate structural analysis would include:		
2.	 A) i and ii B) i and iii C) ii and iii D) ii, iii and iv The distribution factor of a member at a joint is: A) The ratio of the moment borne by the member to the total moment applied at the joint B) The ratio of the area of the member to the sum of the areas of several members C) The ratio of the moment induced at the far end to the moment applied at the number of the moment app]
-	D) None of the above		
3.	Kani's 'Rotation Contribution' method is advantageous over Moment distributio	n meth	-
	A) Kani's method is iterative	L]
	B) Any arithmetic error that creeps in will automatically get corrected		
	C) It involves actual solution of simultaneous equations		
4	D) None of the above	г	1
4.	Sway calculations and non-sway calculations are carried out in a single operation i A) Kani's method B) Moment distribution method	ոլ]
	C) Unit load method D) none		
5.	If the preliminary dimensions of the sections are changed relatively, the analysis of	an be	modified
	fast in	[]
	A) Moment distribution method B) Kani's method		
(C) Double integration method D) Consistent deformation method	hation	
6.	When an end of continuous beam is fixed, in Kani's method, the rotation contri- A) 0 B) EI/l C) $2EI/l$ D) EI	loution	will be:
7.	In Kani's method an overhand can be conveniently dealt with be regarding it as	a mem	ber with
	length.	[]
	A) Infinite B) zero C) unit D) none		
8.	In Kani's method, the displacement contribution of a member with a sway of δ is:	[]
	A) EI δ B) $6EI\delta/l^2$ C) $4EI\delta/l$ D) $3EI/l$		
9.	Kani's Method was introduced by:	[]
	A) Gasper Kani B) G.A. Maney C) Hardy Cross D) None		
10	Rotation factor is defined as:	[]
11	A) 0.5DF B) 0.25DF C) -0.5 DF D) -0.25DF		11 - 6 2
11	A Continuous beam ABC, supports A and C are fixed and support B simply supported car	ries an	ual of 3
	kNm ⁻¹ over AB span. Span AB=6m, BC=4m.Fixed end moment at A A) -9kNm B) 9.5kNm C) -8.5 kNm D) 8kNm	[]
12	A Continuous beam ABC, supports A and C are fixed and support B hinged carries an udl	of 3 kN	√m ⁻¹
	over BC span. Span AB=6m, BC=4m Fixed end moment at B	[]
	A) -9kNm B) 9kNm C) -4 kNm D) 4 kNm		

QUEST	TION BANK	2018
13. The distribution factor of a member at a joint is:	[]
A) The ration of the moment borne by the member to the total moment appliC) The ration of the area of the member to the sum of the areas of several meD) The ratio of the member in local status of several methods.	embers	
D) The ratio of the moment induced at the far end to the moment applied at thE) None of the above	ne near end	
14. A beam is completely analysed, when	[1
A) Support reactions are determined	L	L
B) Shear and moment diagrams are found		
C) The moment of inertia is uniform throughout the length		
D) All of the above	r	
15. A rigid frame is a structure composed of members which are connected by	Į	J
A) Rigid joints B) simple bearing C) a single rivet D) r	one of the abo	ove
16. Consider the following statements	[]
Sinking of an intermediate support of a continuous beam		
i. Reduces the negative moment at a support		
ii. Increases the negative moment at a support		
iii. Reduces the positive moment at a support		
iv. Increases the positive moment at the centre of span		
Of these statements, which are correct		
A) 1 and 4 B) 1 and 3 C) 2 and 3 D) 2	2 and 4	
17. For the application of moment area method, for finding deflection at a sec	ction in a bea	m
	[]
A) The position of at least one tangent to the elastic curve, should be k	nown	
B) The M/EI diagram must be a triangle		
C) The beam must be of uniform moment of inertia		
D) The B.M. diagram if known is sufficient		
18. Which of the following is not the displacement method	[]
A) Equilibrium method B) Moment Distribution method		
C) Column analogy method D) Kani's method		
19. Which of the following methods of structural analysis is a Force method	[]
A) Slope deflection method B)Moment Distribution method		
C) Column analogy method D)Kani's method		
20. The force required for a spring produced by unit displacement is called'	[]
A) Flexibility B) stiffness C) torsional D) none		
21. In the displacement method of structural analysis the basic unknowns are	[]
A) Displacement B) force C) displacement & Force D) none of the	above	
22. The analysis of multistoried frames are done by	[]
A) slope deflection method B)moment distribution method		
C) Kani's method D)None		
23. Rotation factor for fixed ended beam is calculated by kani's method is	[]
A) - 0.5 K/∑ K B)-0.4 K/∑ K C)-0.3 K/∑ K	D)None	
24. Fixed end moment from A to B for beam AB carries eccentric load is A) W $a^2 b/l^2$ B) W $a b^2/l^2$ C)W a b/l D)none	[]

				QUESTION BANK	201	8
25. Final moments ca	lculated by	which form	ula		[]
	•		-NEC+2FEC C) FEM+	2NEC D)None		-
,		<i>,</i>	n is calculated by kani's	,	ſ]
A) -1.5 k/∑k – E					E	-
·	· <u> </u>		is a symmetric triangle	with maximum ordin	nate as	
A) WL ² /12	B)W]	[/8	C) WL/4	D)WL/3]
,	,		is a symmetric parabol	,	linate a	S
20. In portion DC, the		in diagram	is a symmetric parabol]
A) WL ² /8	B)W]	[/8	C) WL/4	D)WL/3	L	1
,	,		bers meeting at the join	/	Г]
A) Equal	iname, the re	nating men	ibers meeting at the join		L	1
B) Proportional	to the lengt	h of the me	mber			
C) Proportional	-		linder			
D) Proportional			ont of inartia			
· •					r	1
30. Displacement fact			-	D) $2/2(V/\Sigma V)$	L	1
· · <u> </u>		J(K/ZK)	C) -3/2(K/∑K)	D) -2/3(K/∑K)	r	1
31. Storey moment is $A > S + \frac{1}{2}$		/1_	C) 21 /C	D) Norra	_]
A) $S_r h_r/3$	B) S_{r}		C) $3h_r/S_r$	D) None		4 1
	nown value	s of all rotat	tion contribution and di	splacement contribu	tion are	taken
equal to	N 1				_	J
,	3) -1	C) Zero	D) None		r	-
	•		oments in the column, w	which may be called	_]
A)Rotation cont		· •	acement contribution			
C) Torsional Co		D) None			-	-
34. Rotation at the fix					_]
<i>'</i>	B) L/4	C) Zero	D) none			
35. Net moment at the]
·	B) double	C) half	D) none			
36. Bending Moment					[]
A) directly prop	ortional	B) indire	ctly proportional			
C) equal		D) all the	above			
37. Stiffness of beam i		0]
	B) 3EI/L	C) 2EI/L	DEI/L		_	_
38. Degree of freedom]
,	B) 1	C) 2	D) 3		• • • •	
	•		its entire span. The join		_	cur on
			from the cen	ter.	_]
/	B) 1/3	C) $1/2\sqrt{3}$	D) 1/4√3		-	
40. A beam is a struct	ural membe	r predomin	antly subjected to]
A) Transverse le	bads B) ax	ial forces	C) twisting moment	D) none of the	above	
				D 11		
				Prepared by: J.K	.Elun	1alai.